Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system.

نویسندگان

  • C R McKeown
  • C K Thompson
  • H T Cline
چکیده

Many organisms confront intermittent nutrient restriction (NR), but the mechanisms to cope with nutrient fluctuations during development are not well understood. This is particularly true of the brain, the development and function of which is energy intensive. Here we examine the effects of nutrient availability on visual system development in Xenopus laevis tadpoles. During the first week of development, tadpoles draw nutrients from maternally provided yolk. Upon yolk depletion, animals forage for food. By altering access to external nutrients after yolk depletion, we identified a period of reversible stasis during tadpole development. We demonstrate that NR results in developmental stasis characterized by a decrease in overall growth of the animals, a failure to progress through developmental stages, and a decrease in volume of the optic tectum. During NR, neural progenitors virtually cease proliferation, but tadpoles swim and behave normally. Introducing food after temporary NR increased neural progenitor cell proliferation more than 10-fold relative to NR tadpoles, and cell proliferation was comparable to that of fed counterparts 1 week after delayed feeding. Delayed feeding also rescued NR-induced body length and tectal volume deficits and partially rescued developmental progression defects. Tadpoles recover from developmental stasis if food is provided within the first 9 days of NR, after which access to food fails to increase cell proliferation. These results show that early stages of tadpole brain development are acutely sensitive to fluctuations in nutrient availability and that NR induces developmental stasis from which animals can recover if food becomes available within a critical window.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Using Xenopus laevis retinal and spinal neurons to study mechanisms of axon guidance in vivo and in vitro.

The intricate and precise establishment of neuronal connections in the developing nervous system relies on accurate navigation of growing axons. Since Ramón y Cajal's discovery of the growth cone, the phenomenon of axon guidance has been revealed as a coordinated operation of guidance molecules, receptors, secondary messengers, and responses driven by the dynamic cytoskeleton within the growth ...

متن کامل

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

Cloning and developmental expression of Baf57 in Xenopus laevis

Mammalian and Drosophila homologues of Baf57 have been previously isolated as being a subunit of SWI/SNF-like chromatin remodeling complexes. Here, we report the cloning and developmental expression of Xenopus Baf57. We isolated XBaf57 by using an expression cloning approach to identify novel modulators of Xenopus Smad7. XBaf57 co-operates with XSmad7 by increasing the expression of neural mark...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 220 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2017